Dust, Disks, and Planets

David J. Wilner (Harvard-Smithsonian CfA)

Examples for SAFIR

- Topic 1
 <u>debris disks</u> and planet signatures
- Topic 2 dust settling in protoplanetary disks

Debris Disks around Main Sequence Stars

- orbiting dust particles subject to gravity, wind/radiation pressure (ejection) and drag (inspiral)
- t_{P-R} = (400/β)(M_o/M_{*})(r/AU)² yr
 < stellar age (>100 Myr)
 dust particles must be replenished

- debris disks are common (>15% of nearby stars),
 cool (T < 100 K), Kuiper Belt size (R > 50 AU),
 tenuous (L/L* ~ 10-5 to 10-2, M ~ M_{moon}), gas poor
- Spitzer sensitivity will greatly improve statistics
- periodic perturbations by planets can delay drift, trap dust

Solar System Analogs and Confusion

Blain et al. 2002

- Is Solar System unusual?
- Kuiper Belt dust likely <10⁻⁵
 M_{Earth} (Landgraf et al. 2002)
- at 5 pc, size ~10 arcsec
- for Spitzer at 70 μm,
 ~125 μJy/pix (T~ 40 K),
 confusion problematic
- ALMA: no confusion, but inadequate sensitivity

Planet Parameter Space

Dust in our Solar System from Afar

- Liou & Zook (1999)
 simulations suggest
 Solar System
 could be recognized
 to harbor at least
 two planets
 (Neptune, Jupiter)
- constrast depends on $\beta = F_{Rad}/F_{Grav}$ (e.g. Holmes et al. 2003)

Face-on view of the brightness from a numerical simulation of the emission of 23 μ m dust particles from Liou & Zook (1999). The signatures of the planets are (1) deviation from a monotonic radial brightness profile, (2) ring along Neptune orbit, (3) variation along ring, (4) relative lack of particles within 10 AU

Resolved Debris Disks

- Submm images: disk-like rings w/holes, arcs, clumps, blobs (Holland et al. 1998, 2003; Greaves et al. 1998)
- two flavors of dust-planet models (Wilner et al. 2002):
 - outer belt of planetesimals and dust produce non-resonant particles that inspiral and become trapped in resonances
 - parent bodies of dust trapped in resonances (like Plutinos)

Rings are Signposts of Planet Stirring?

bright (L ~ 10⁻⁴ L_{*})
 narrow (∆a/a ~ 0.1)
 rings of observed
 scales explained by
 collisional cascade
 in planetesimal disk
 stirred by (recent)
 formation of bodies
 of radius >1000 km

(Kenyon & Bromley 2002, 2004)

 does not account for azimuthal variations

ε Eridani: Sculpting by a Planet?

- models that selectively populate resonances are not realistic unless motivated by e.g. parent bodies trapped by planet migration (Vega? See Wyatt 2003), encounter, ...
- models predict time dependence that can be tested

ε Eridani: new 350 μm CSO Observations

Modeling Directions

- planet parameters
 (mass, eccentricity, semi-major axis, inclination, ...)
- initial conditions of dust parent bodies
- collisional systems where t_{coll} << t_{MMR}
- particle size range
 (β small and large)

Kuchner & Holman

Fomalhaut Circumstellar Disk

Spitzer Space Telescope • MIPS

NASA / JPL-Caltech / K. Stapelfeldt (JPL)

ssc2003-06i

Stages of Disk Evolution/Planet Formation

Fig. 2, Beckwith & Sargent, Nature, 383, 139-144.

Protoplanetary Disks are Multi-λ Objects

gas and dust with radial and vertical gradients (n,T, ...)

surface shape irradiation

D'Alessio et al. 2001

Qi et al. 2004

Grain Growth to Planetismals and Planets

Early growth: sticking & coagulation

Mid-life growth: gravitional attraction

Late growth: gas sweeping

Settling – Dust Evolution in Solar Nebula

Decrease of dust/gas in upper layers

Weidenschilling 1997

Lower surface (even with small grains in upper layers)

Dust Settling Modifies Disk Shape/Spectrum

Summary

- Far-Infrared is key spectral regime for dusty disks.
- Large apertures needed to beat confusion for true analogs of Solar System dust.
 Sensitivity/resolution/calibration are all important!
- Inference of unseen planets from debris disk structure is promising (and most interesting for large separations). High confidence requires better images, far-infrared to mm, and more sophisticated modeling.
- Many applications to protoplanetary disk evolution, e.g. dust coagulation and settling to midplane